Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2550: 267-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180698

RESUMO

Cloning may seem to be a view from the past. The time before software, computers and AI were invented. It seems to us worth discussing these points in view of our favorite target: the melatoninergic system. In a few stances, it might be important to point out that even in the new era of dry science, there is still a need to experiment and to prove at the bench that our in silico assertions are right. Most of the living animals express to some extend the melatonin receptors. Some of these animal genomes were completely or partially sequenced, and it is tempting to extract from this huge information the sequence(s) of our favorite genes (MLT receptors). Then, why bother cloning, as opposed to simply built the gene and express it in a host cell? Because the genetic boundaries of the expressed sequence(s) are not 100% sure. Because the melatonin receptor gene(s) comprise a first exon 25,000 base pair far from the second one and the limits between this Ex1 and In1-as between In1 and Ex2-are subject to changes that might have a huge impact on the biochemical properties of the receptor, once expressed. Because a receptor is a biochemical entity with characteristics that are important for the functioning of this particular pathway, and more generally, for the functioning of life.


Assuntos
Melatonina , Animais , Clonagem Molecular , Éxons , Melatonina/metabolismo , Receptores de Melatonina/genética
2.
Brain ; 145(3): 1029-1037, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34983064

RESUMO

Hereditary spastic paraplegia refers to rare genetic neurodevelopmental and/or neurodegenerative disorders in which spasticity due to length-dependent damage to the upper motor neuron is a core sign. Their high clinical and genetic heterogeneity makes their diagnosis challenging. Multigene panels allow a high-throughput targeted analysis of the increasing number of genes involved using next-generation sequencing. We report here the clinical and genetic results of 1550 index cases tested for variants in a panel of hereditary spastic paraplegia related genes analysed in routine diagnosis. A causative variant was found in 475 patients (30.7%) in 35/65 screened genes. SPAST and SPG7 were the most frequently mutated genes, representing 142 (9.2%) and 75 (4.8%) index cases of the whole series, respectively. KIF1A, ATL1, SPG11, KIF5A and REEP1 represented more than 1% (>17 cases) each. There were 661 causative variants (382 different ones) and 30 of them were structural variants. This large cohort allowed us to obtain an overview of the clinical and genetic spectrum of hereditary spastic paraplegia in clinical practice. Because of the wide phenotypic variability, there was no very specific sign that could predict the causative gene, but there were some constellations of symptoms that were found often related to specific subtypes. Finally, we confirmed the diagnostic effectiveness of a targeted sequencing panel as a first-line genetic test in hereditary spastic paraplegia. This is a pertinent strategy because of the relative frequency of several known genes (i.e. SPAST, KIF1A) and it allows identification of variants in the rarest involved genes and detection of structural rearrangements via coverage analysis, which is less efficient in exome datasets. It is crucial because these structural variants represent a significant proportion of the pathogenic hereditary spastic paraplegia variants (∼6% of patients), notably for SPAST and REEP1. In a subset of 42 index cases negative for the targeted multigene panel, subsequent whole-exome sequencing allowed a theoretical diagnosis yield of ∼50% to be reached. We then propose a two-step strategy combining the use of a panel of genes followed by whole-exome sequencing in negative cases.


Assuntos
Paraplegia Espástica Hereditária , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cinesinas/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Linhagem , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Espastina/genética , Sequenciamento do Exoma
3.
Sci Rep ; 8(1): 13167, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177816

RESUMO

Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body's clocks at the beginning of the active period.


Assuntos
Tecido Adiposo Marrom/metabolismo , Nível de Alerta/genética , Cricetulus/genética , Metabolismo Energético/genética , Hibernação/genética , Hipotálamo/metabolismo , Proteínas Circadianas Period/genética , Animais , Ritmo Circadiano/genética , Cricetulus/metabolismo , Europa (Continente) , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Anotação de Sequência Molecular , Proteínas Circadianas Period/metabolismo , Tri-Iodotironina/metabolismo
4.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973510

RESUMO

For many years, it was of interest to identify the sequences encoding the two melatonin receptors (MT1 and MT2) from various species. After publishing the basic molecular characterization of the human, rat, mouse, sheep, and platypus MT1, MT2, or Mel1c receptors, we began cloning the genes from other animals, such as birds, bats, and vipers. The goal was to advance the receptor crystallization, which could greatly contribute the understanding of the sequence/stability relationship. European hamster MT1 receptor was cloned for the first time from this gender, was expressed in stable form in cells, and its binding characterized with a sample of 19 melatonin ligands. Siberian hamster (Phodopus sungorus) expresses a non-functional MT2. We observed that unlike this hamster, the European hamster (Cricetus cricetus) does not have a stop codon in the MT2 sequence. Thus, we undertook the tedious task of cloning the MT2 receptor. We partially succeeded, sequencing the complete exon 2 and a fragment of exon 1 (from putative amino acids 12 to 38 and 77 to 323), after several years of efforts. In order to show that the protein parts we cloned were capable to sustain some binding capacities, we designed a chimeric MT2 receptor using a consensus sequence to replace the unknown amino acids, based on other small rodent MT2 sequences. This chimeric construct could bind melatonin in the nanomolar range. This work is meant to be the basis for attempts from other laboratories of the community to determine the complete natural sequence of the European hamster MT2 receptor. The present work is the first to show that, among the hamsters, if the Siberian is a natural knockout for MT2, the European one is not.


Assuntos
Cricetinae/genética , Melatonina/metabolismo , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Códon de Terminação , Éxons , Ligantes , Masculino , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA
5.
PLoS One ; 13(3): e0191904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29529033

RESUMO

Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.


Assuntos
Melatonina/metabolismo , Ornitorrinco/metabolismo , Receptores de Melatonina/metabolismo , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Clonagem Molecular/métodos , Filogenia , Ornitorrinco/genética , Ligação Proteica , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...